Topics in the June 2008 Exam Paper for CHEM1001

Click on the links for resources on each topic.

2008-J-2:

• Elements and Atoms

2008-J-3:

- Lewis Model of Bonding
- VSEPR

2008-J-4:

- Atomic Energy Levels
- Lewis Model of Bonding

2008-J-5:

• Stoichiometry

2008-J-6:

• Stoichiometry

2008-J-8:

- Gas Laws
- Chemical Equilibrium

2008-J-9:

- First Law of Thermodynamics
- Chemical Equilibrium

2008-J-10:

- Introduction to Electrochemistry
- Electrochemistry
- Electrolytic Cells
- Batteries and Corrosion

2008-J-11:

- First Law of Thermodynamics
- Thermochemistry
- Types of Intermolecular Forces

2008-J-12:

- First Law of Thermodynamics
- Oxidation Numbers
- Nitrogen Chemistry and Compounds

22/01(a)

The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1A - CHEM1001FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2008

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 17, 21 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gained		Marker
11	6			
12	9			
13	7			
14	6			
15	6			
16	4			
18	6			
19	5			
20	7			
22	6			
23	6			
Total	68			
Check Total				

CHEM1001	2008-J-2	June 2008	22/01(a)	
• Write balanced equations for the following nuclear reactions.				
Nickel-63 undergoes beta de to become a stable nuclide.	cay			
An alpha particle is produced from the decay of radon-222	1			
• Direct damage to the DNA or ultraviolet radiation of wave this radiation?	f skin cells can length 300.0 nm	be brought about by exposure to n. What are the frequency and energy of	2	
Frequency:	E	nergy:		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1001

• Complete the following table.					
Molecular formula	$ m NH_3$	PCl ₅	BrF ₃		
Name					
Lewis structure					
Number of bonding electron pairs on central atom					
Number of non- bonding electron pairs on central atom					
Molecular shape					

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1001	2008-J-5	June 2008	22/01(a)
• What mass of oxyger C ₄ H _{10.} How many m	is required for the complete noles of CO_2 and H_2O are p	ete combustion of 5.8 g of butane, produced?	Marks 4
• A white powder used percentage: 69.6% B	in paints, enamels and cera; 6.09% C; 24.3% O. Wh	ramics has the following mass hat is its empirical formula?	2
	Ansv	wer:	

Marks • Lead(II) iodide precipitates when 0.080 M lead(II) nitrate solution (150.0 mL) is 6 added to 0.080 M potassium iodide solution (50.0 mL). Write a balanced ionic equation for the reaction that occurs. What amount (in mol) of lead(II) iodide precipitates? Answer: What amount (in mol) of $Pb^{2+}(aq)$ ions remain in solution after the reaction? Answer: What is the final concentration of $NO_3^{-}(aq)$ ions remaining in solution after the reaction? Answer:

CHEM1001	2008-J-7	June 2008	22/01(a)		
• Cadmium chloride and cadmium sulfate are both soluble in water. Cadmium carbonate and cadmium hydroxide are both insoluble. Describe, using equations where appropriate, how to convert cadmium chloride into cadmium sulfate.					
THE REMAINDER	OF THIS PAGE IS FO	R ROUGH WORKING ONLY]		

• Ammonia, NH ₃ , is produced from nitrogen and hydrogen gas at high temperatures using the Haber process. At a temperature of 670 K and 50.0 MPa pressure, an equilibrium mixture was found to contain 0.925 mol nitrogen, 2.775 mol hydrogen and 1.50 mol ammonia. Write a balanced equation for the Haber process.	Marks 6
Calculate the mole fraction of each gas in the mixture.	
Calculate the partial pressure of each gas.	_
Calculate the value for K_p for the reaction at this temperature.	
Answer:	

CHEM1001	2008-J-9	June 2008	22/01(a)
• The dissociation of gaseous the following equation.	N_2O_4 to NO_2 in the	e upper atmosphere occurs according to	Marks 2
$N_2O_4(g)$	\ge 2NO ₂ (g)	$K_{\rm p} = 0.106$ at 1800 K.	
What is the free energy chan	ge (in kJ mol ⁻¹) f	or this reaction?	
	A		-
	An	Swer:	-
• A sample of 0.62 mol CCl ₄ we temperature. At equilibrium constant K_c for the following	was placed in a 2. $[Cl_2] = 0.060 \text{ M}$ g reaction at that t	0 L container and heated to a certain . What is the value of the equilibrium emperature?	3
CO	$Cl_4(g) \leftarrow C$	$C(s) + 2Cl_2(g)$	
			1
	·		4

Answer:

CHEM1001	2008-J-10	June 2008	22/01(a)
 A galvanic cell consists of a Cu²⁺(aq)/Cu(s voltage of the cell is 0.35 V and the conce concentration of Ag⁺(aq)? 		a Ag ⁺ (aq)/Ag(s) half cell. If the n of Cu ²⁺ (aq) is 3.5 M, what is the	Marks 2
			_
	Answ	er:	
• How many minutes will be re from a solution containing Au	quired for a 1.50 A ıCl4 [–] ions?	current to electroplate 1.97 g of gold	2
	Answ	er:	-
 A solar powered light uses a r standard voltage for the batter NiO₂(s) + Cd(s) + 2H₂O(l) 	nickel-cadmium bat ty from the following $\rightarrow Ni(OH)_{2}(s) + t$	tery to store electricity. Calculate the ng: $Cd(OH)_{2} \qquad \Delta G^{0} = -251 \text{ kJ mol}^{-1}$	3
	Answ	er:	

• The congasoling following	version of SO_2 to SO_3 can occur containing traces of sulfur comp g reaction.	in the catalytic converters of cars using pounds. Calculate the enthalpy change of the	Marks 2		
	$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$				
Data:	$S(s) + O_2(g) \rightarrow SO_2(g)$	$\Delta H = -296.8 \text{ kJ mol}^{-1}$			
	$2S(s) + 3O_2(g) \rightarrow 2SO_2(g)$	$\Delta H = -791.4 \text{ kJ mol}^{-1}$			
• If 78.2 specific	is required to raise the temperation heat of lead in J $g^{-1} K^{-1}$?	Answer: ure of 45.6 g of lead by 13.3 °C, what is the	1		
		Answer:			
• Rank th answer.	e following compounds in order	of increasing boiling point? Justify your	3		
	CH ₃ CH ₂ OCH ₂ CH ₃ , CH ₃ OH	H, CH ₄ , CH ₃ CH ₃ , CH ₃ CH ₂ OH			

•	When a 1.00 g sample of carbon is burnt in a calor temperature rise of 6.66 °C is observed. When a 1. decomposed in the same calorimeter, a temperature equation for this reaction is:	meter to produce $CO_2(g)$, a 00 g sample of solid NH_4NO_3 is c rise of 0.300 °C is observed. The	Marks 6
	$2NH_4NO_3(s) \rightarrow 2N_2(g) + 4H_3NO_3(s)$	$I_2O(g) + O_2(g)$	
	What is the heat of reaction for the decomposition	of 1.00 kg of ammonium nitrate?	
	Heat of formation data: $\Delta_{\rm f} H = -393.3 \text{ kJ mol}^{-1}$ for	$CO_2(g)$	
	Answer		
	List all af the nitro can containing succied in this re-	action Deside each size the	
	oxidation number of the nitrogen in that species.	action. Beside each, give the	

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Conversion factors

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion jucions	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	imal fract	ions	Deci	Decimal multiples							
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol						
10^{-3}	milli	m	10^{3}	kilo	k						
10^{-6}	micro	μ	10^{6}	mega	М						
10^{-9}	nano	n	10 ⁹	giga	G						
10^{-12}	pico	р									

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$4.5k_{\rm B}T = hc/\lambda$	$= (RT/nF) \times \ln K$
$T = 2.898 \times 10^6 / \lambda (\text{nm})$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_w = pK_a + pK_b = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{(1 - \frac{1}{k_1})}$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

1	2	3	4	5	6	7	8	9	10	11	12	2	13	14	15	16	17	18
1 нудкоден Н 1.008		_																2 нешим Не 4.003
3	4												5	6	7	8	9	10
LITHIUM I .i	BERYLLIUM												BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON Ne
6.941	9.012												10.81	12.01	14.01	16.00	19.00	20.18
11	12												13	14	15	16	17	18
SODIUM Ng	MAGNESIUM Mg											A	LUMINIUM	SILICON	PHOSPHORUS P	SULFUR		ARGON
22.99	24.31												26.98	28.09	∎ 30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30)	31	32	33	34	35	36
POTASSIUM K		SCANDIUM	TITANIUM Ti	VANADIUM V	CHROMIUM	MANGANESE		COBALT	NICKEL Ni		ZIN 7.1		GALLIUM	GERMANIUM	ARSENIC A S	SELENIUM	BROMINE Rr	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.3	1 39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	3	49	50	51	52	53	54
	STRONTIUM	YTTRIUM V	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM Dh	PALLADIUM	SILVER		UM J	INDIUM	TIN Sm	ANTIMONY	TELLURIUM	IODINE	XENON Vo
КD 85.47	87.62	I 88.91	91 22	92.91	1 VIO 95 94	1C [98 91]	NU 101.07	KII 102 91	106 4	Ag		1 40 1	111 114 82	511 118 69	121.75	127.60	∎ 126.90	Ae 131 30
55	56	57-71	72	73	74	75	76	77	78	79	80)	81	82	83	84	85	86
CAESIUM	BARIUM	57 71	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCI	RY 1	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
CS	Ba		HI	Ta	W	Re	Os	Ir	Pt	Au			TI	Pb	B1	PO	At	Kn
87	88	89-103	1/8.49	100.95	105.85	107	190.2	192.22	193.09	190.97	200.	39 2	204.37	207.2	200.90	[210.0]	[210.0]	[222.0]
FRANCIUM	RADIUM	07-105	TUT RUTHERFORDIU	d DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	I I I ROENTGENIU	м							
Fr			Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg								
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[2/1]	[2/2]								
	5	7	58	50	60	61	62	62	6	1	65	66		67	68	60	70	71
LANTHANI	DES LANTE	/ IANUM C	JO CERIUM P	39 RASEODYMIUM	NEODYMIUM	O I PROMETHIUM	5AMARIUM	EUROPIUN	M GADOLI	T INIUM 1	TERBIUM	DYSPROS) SIUM	HOLMIUM	ERBIUM	THULIUM	7 U ytterbium	/ 1 LUTETIUM
	L	a	Ce	Pr	Nd	Pm	Sm	Eu	G	d	Tb	Dy	y	Ho	Er	Tm	Yb	Lu
	138	3.91 1 ⁴	40.12	140.91	144.24	[144.9]	150.4	151.9	6 157	.25 1	58.93	162.:	50	164.93	167.26	168.93	173.04	174.97
ACTINIDI		9 NUM TI	90 HORIUM I	91 rotactinium	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIU	м СURI	5 им ве	9'/ rkellium	98 califori	S NIUM E	99 INSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
AUTINIDE	A	C '	Th	Pa	U	Np	Pu	Am	C	n	Bk	C	f	Es	Fm	Md	No	Lr
	[22]	2.0] 232.04		[231.0]	238.03	[237.0]	[239.1]	[243.1	[] [247	7.1] [2	1] [247.1]		.1] [252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

22/01(b)

June 2008